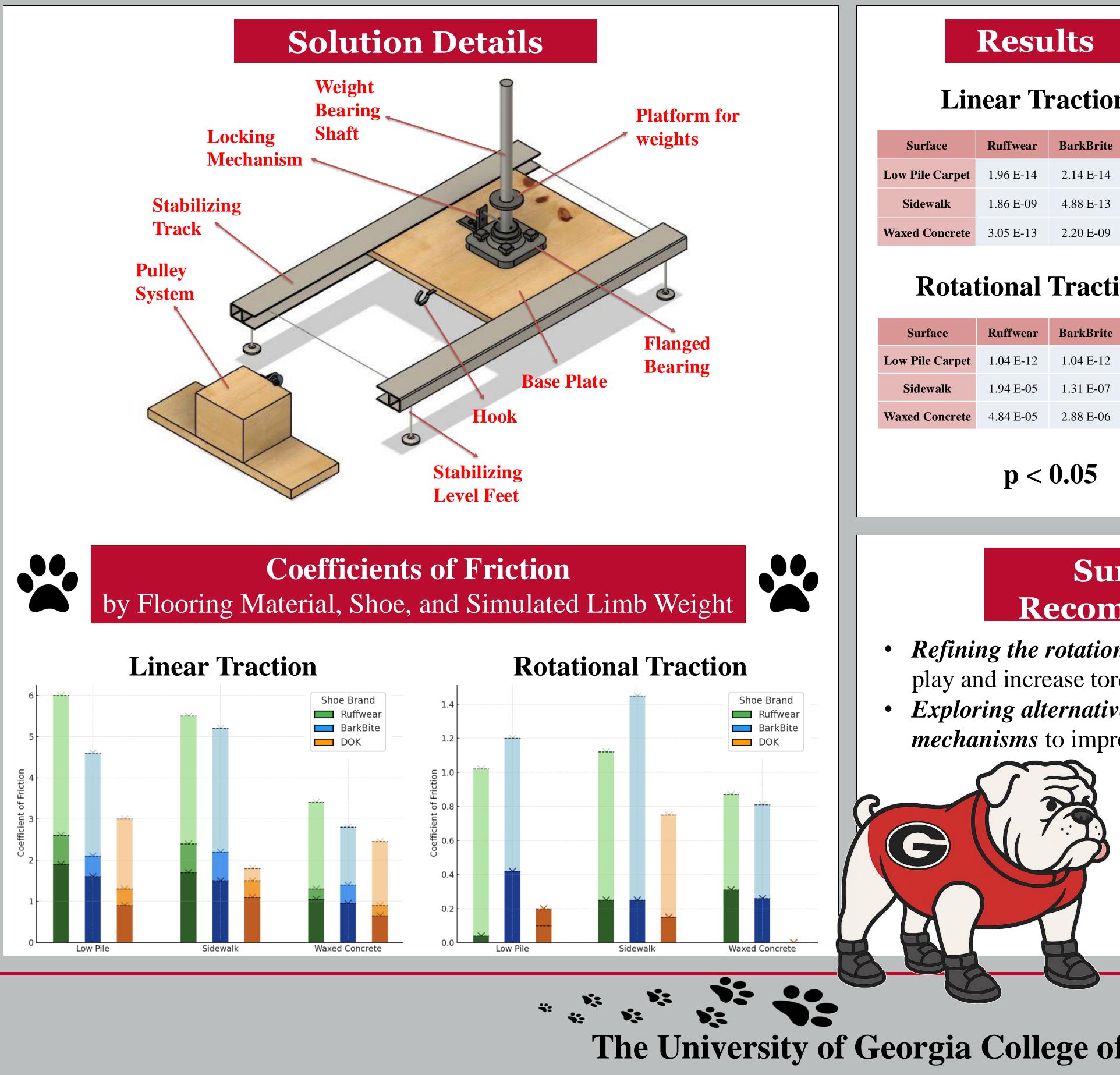


Project Background

The University of Georgia - College of Veterinary Medicine is researching tractionenhancing products (**TEPs**) to improve safety and performance in working dogs. There is a *large gap in the clinical effects of dog shoes* making it difficult to evaluate injury prevention such as falls, joint strain, and long-term musculoskeletal issues. Our team was tasked with designing a portable device that provides accurate, repeatable measurements of both **linear** and **rotational traction** for multiple simulated limb weights across various surfaces.

Methods for Solution


The device must be **transportable** and simplistic, providing the user with quantifiable data to determine coefficients of traction.

Two-Part Method

Locked: force gauge and decoupled pulley system with stabilizing frame **Unlocked:** torque gauge rotating about center rod bearing

$$\mathbf{\overset{\bigstar}{\mu}} = \frac{F_t}{N} \quad \tau = rF_t$$

These methods provide our clients with measures of slippage.

Dog Grip: Evaluating Dog Shoe Traction Team Members: Grace Gordon, Lucy Claire Moon, Sarah Peterson, Tyler Fluri, Liam Hounslow Faculty Advisor: Prof. Kevin Wu

Dr. Bryan Torres & Mat Sartorato

Linear Traction

Surface	Ruffwear	BarkBrite	DOK
Low Pile Carpet	1.96 E-14	2.14 E-14	1.04 E-12
Sidewalk	1.86 E-09	4.88 E-13	4.13 E-10
Waxed Concrete	3.05 E-13	2.20 E-09	3.49 E-13

Rotational Traction

Surface	Ruffwear	BarkBrite	DOK
Low Pile Carpet	1.04 E-12	1.04 E-12	1.04 E-12
Sidewalk	1.94 E-05	1.31 E-07	1.33 E-05
Waxed Concrete	4.84 E-05	2.88 E-06	

Impact

Our design prioritizes portability, ease of use, and adaptability, addressing a real-world problem with a practical, engineering-based solution that directly impacts *animal safety* and *performance*. Friction analysis allows for traction enhancement which aids *injury* prevention.

Summary & Recommendations

&

- **Refining the rotational testing mechanism** to reduce play and increase torque sensitivity
- Exploring alternative bearing or locking *mechanisms* to improve control during rotational test
 - Conducting long-term *durability* testing on various surfaces
 - **Biomechanical analysis** for clinical effects of TEPs for dawgs

The University of Georgia College of Veterinary Medicine –